Home About CLIM-RUN Case Studies Portal Events Newsletter Products Links
Home » Products » Publications and Articles

Publications and Articles


This section contains all the publications produced within CLIMRUN with link to the articles and or pdf version when available.
Please visit also the section Newsletter, to view CLIMRUN newsletter articles. 

 


Since the 1980s several spaceborne sensors have been used to retrieve the aerosol optical depth (AOD) over the Mediterranean region. In parallel, AOD climatologies coming from different numerical model simulations are now also available, permitting to distinguish the contribution of several aerosol types to the total AOD. In this work, we perform a comparative analysis of this unique multiyear database in terms of total AOD and of its apportionment by the five main aerosol types (soil dust, seasalt, sulfate, black and organic carbon).


Authors: P. Nabat, S. Somot, M. Mallet, I. Chiapello, J. J. Morcrette, F. Solmon, S. Szopa, and F. Dulac


Wildfires are a major concern on the Iberian Peninsula, and the establishment of effective prevention and early warning systems are crucial to reduce impacts and losses. Fire weather indices are daily indicators of fire danger based upon meteorological information. However, their application in many studies is conditioned to the availability of sufficiently large climatological time series over extensive geographical areas and of sufficient quality. Furthermore, wind and relative humidity, important for the calculation of fire spread and fuel flammability parameters, are relatively scarce data. For these reasons, different reanalysis products are often used for the calculation of surrogate fire danger indices, although the agreement with those derived from observations remains as an open question to be addressed.


Authors: J. Bedia, S. Herrera, J. M. Gutiérrez, G. Zavala3, I. R. Urbieta, and J. M. Moreno


The study of extreme events has become of great interest in recent years due to their direct impact on society. Extremes are usually evaluated by using extreme indicators, based on order statistics on the tail of the probability distribution function (typically percentiles). In this study, we focus on the tail of the distribution of daily maximum and minimum temperatures. For this purpose, we analyse high (95th) and low (5th) percentiles in daily maximum and minimum temperatures on the Iberian Peninsula, respectively, derived from different downscaling methods (statistical and dynamical). First, we analyse the performance of reanalysis-driven downscaling methods in present climate conditions. The comparison among the different methods is performed in terms of the bias of seasonal percentiles, considering as observations the public gridded data sets E-OBS and Spain02, and obtaining an estimation of both the mean and spatial percentile errors. Secondly, we analyse the increments of future percentile projections under the SRES A1B scenario and compare them with those corresponding to the mean temperature, showing that their relative importance depends on the method, and stressing the need to consider an ensemble of methodologies.


Authors: A. Casanueva, S. Herrera, J. Fernández, M.D. Frías and J.M. Gutiérrez


A growing interest in extreme precipitation has spread through the scientific community due to the effects of global climate change on the hydrological cycle, and their threat to natural systems' higher than average climatic values. Understanding the variability of precipitation indices and their association to atmospheric processes could help to project the frequency and severity of extremes. This paper evaluates the trend of three precipitation extremes: the number of consecutive dry/wet days (CDD/CWD) and the quotient of the precipitation in days where daily precipitation exceeds the 95th percentile of the reference period and the total amount of precipitation (or contribution of very wet days, R95pTOT). The aim of this study is twofold. First, extreme indicators are compared against accumulated precipitation (RR) over Europe in terms of trends using non-parametric approaches. Second, we analyse the geographically opposite trends found over different parts of Europe by considering their relationships with large-scale processes, using different teleconnection patterns. The study is accomplished for the four seasons using the gridded E-OBS data set developed within the EU ENSEMBLES project.


Authors: : A. Casanueva1, C. Rodríguez-Puebla2, M. D. Frías1, and N. González-Reviriego